

Analysis & Implementation - the European Experience

IHSS 2009

John Vincent, EASA Marieke van Hijum, EASA Tony Eagles, CAA UK John Steel, CAA Ireland

Michel Masson, EASA Martin Bernandersson, CAA Sweden

1. SETTING THE SCENE

- 2. METHODOLOGY
 - 3. INTERIM RESULTS
 - 4. CONCLUDING REMARKS

Photo Vasco Morao

EHEST is the helicopter component of ESSI and the European branch of IHST

Why regional EHSAT analysis teams?

- Maximise usage of resources:
 - ★ working on local data, less travelling
- Relations between partners already established
- Team aware of local context
- Implementations/action plans also have to be implemented on regional level
- Languages used in accident investigation reports

1. SETTING THE SCENE

- 2. METHODOLOGY
 - 3. INTERIM RESULTS
 - 4. CONCLUDING REMARKS

General Process

By the European Helicopter Safety Analysis Team - EHSAT

Scope of analysis

- Helicopter Accidents (definition ICAO Annex 13)
- ➤ Date of occurrence period 2000 2005
- State of occurrence located in Europe
- Where an Accident Investigation Board final report is available

Approach

- Data driven approach
- Maintain international compatibility
 - ★ Reviewing accidents using a standard method adapted from IHST
 - ★ Added specific analysis on human factors (HFACS)
- Format allows comparison with data from other regions

Analysis Methodology EHSAT

- 1. Collect general occurrence information
 - 2. Describe and analyse the accident

3. Assign standard codes to factors

Standard Problem Statements (SPS) and

Human Factors Analysis and Classification System (HFACS)

4. Produce Intervention Recommendations (IR)

Human Factors Analysis and Classification System (HFACS)

- HFACS by Wiegmann and Shappell
 - Proven tool for analysing unsafe acts / human errors and their causes
 - Human error is the start of HFACS classification not the conclusion
 - ★ Over 170 codes in 4 areas

http://hfacs.com/

Benefits of using HFACS

- Human Factors (HF) need to be addressed if the objective of achieving an 80% reduction in helicopter accident rates by 2016 is to be realised
- HFACS is a well documented system based on a sound theoretical framework that addresses HF in a detailed and structured manner
- HFACS gives the opportunity to address errors and violations as well as organisational aspects
- ➤ Also gives the opportunity to address maintenance issues (HFACS ME)

1. SETTING THE SCENE

2. METHODOLOGY

3. INTERIM RESULTS

General Data

SPS and HFACS Analysis

Intervention Recommendations

4. CONCLUDING REMARKS

Photo AgustaWestland

Scope of interim dataset

- ➤ Total of 303 accidents within timeframe 2000-2005 have been analysed (as of Aug 09)
 - ★ Covers work from 11 Regional Teams across Europe
 - ★ Estimated to be some 75% of the published reports available
- Standard Problem Statements
 - ★ In total 1775 statements recorded
- > HFACS
 - ★ In total 818 factors recorded

Accident Distribution over Type of Operation

EHSAT Dataset

State Flight, 4% (e.g. Police, Military)

Aerial Work, 32% (e.g. Fire Fighting, Sling/External Load)

General Aviation, 45% (e.g. Pleasure, Training and Business flights)

Commercial Air Transport, 19% (e.g. Passenger, HEMS, Offshore, CAT Training, CAT Positioning)

Accident Distribution over Phase of Flight EHSAT Dataset

% of Accidents where SPS level 1 has been identified at least once EHSAT Dataset

- High correlation with US results on SPS level 1
- Lower levels SPS show some differences

Example scenarios

- Example accident scenarios presented for
 - ★ Commercial Air Transport
 - ★ Aerial Work
 - ★ General Aviation Pleasure Flight
 - ★ General Aviation Training
- Scenarios illustrate the most identified SPS statements and HFACS codes for the types of operation

An example Commercial Air Transport scenario

- During a HEMS mission after the patient had been loaded the helicopter crew decided to continue the mission in deteriorating weather conditions.
- The decision to continue was taken because an ambulance was waiting to transfer the patient to hospital.
- During the take-off in poor visibility and falling snow the right front skid of the helicopter struck the surface and as a result it nosed over uncontrollably and impacted the ground.

An example Commercial Air Transport scenario

- During a HEMS mission after the patient had been loaded the Loss of Visual Reference continue the mission in deteriorating weather conditions.
- The decision to continue was taken because an alnadequate decisions ansfer the patient to hospital.
- During the take-off in policite of the pressure snow the right front skid of the helicopter struck the surface and as a result it nosed over uncontrollably and impacted the ground.

An example Commercial Air Transport scenario

SPS	HFACS
Pilot decision making	Decision Making - Operation
Self induced pressure	Risk assessment – Operation
Failed to follow procedures	Skill-based errors
Flight profile unsafe	Whiteout/Vision restricted
Inadequate oversight	Channelized attention
Reduced visibility	Communication critical information/Planning
Selection of inappropriate landing site	Pressing
Management – Failure to enforce company SOPs	Procedural Guidelines

An example Aerial Work scenario

- A Pilot had been tasked to carry out aerial application of a field using the helicopter.
- Prior to commencing the aerial work task the pilot did not carry out an inspection of the intended operating area.
- During the course of the sortie the wind direction changed and the pilot was forced to adjust his spraying pattern.
- As result his new flight path brought him into conflict with some trees.
- While trying to manoeuver to avoid the trees the pilot struck a power line and as a result the helicopter lost control and crashed.

An example Aerial Work scenario

- A Pilot had been tasked to carry out aerial application of a fielhadequate pre-flight preparation
 Prior to commencing the aerial work task the pilot did
- Prior to commencing the aerial work task the pilot did not carry out an inspection of the intended operating aDistracted by presence of trees
- During the course of the sortie the wind direction changed and the pilot was forced to adjust his spraying pattern
- spraying pattern
 Pressure to complete task
 As result his new flight path brought him into conflict with some trees.
- ➤ While trying to manoeuver to avoid the trees the pilot struck a power line and as a result the helicopter lost control and crashed.

An example Aerial Work scenario

SPS	HFACS
Mission involves flying near hazards	Risk assessment - Operation
Mission requires low/slow flight	Decision making – Operation
	Channelized att./Inattention
Inadequate consideration of	Misperc. of operational cond.
obstacles	Mission Planning
Pilot decision making	
Diverted attention, distraction	Excessive motivation to succeed
Selection of inappropriate landing site	Fatigue
	Supervision inadequate
Customer/company pressure	Doctrine

An example General Aviation – Pleasure flight scenario

- The helicopter was on a Visual Flight Rules flight. En route, it entered an area of rising terrain and low cloud base.
- Radar tracking indicates that the helicopter slowed down, and then made a sharp turn before disappearing off the screen.
- Shortly after the loss of radar contact the helicopter suffered an in-flight collision with terrain.

An example General Aviation – Pleasure flight scenario

- The helicopter was on a Visual Flight Rules flight. Nonweather forecast obtained g terrain and low cloud base.
- Radar tracking indicat Norflight plan filed slowed down, and then made a sharp turn before disappearing off the screen No contact established with ATC
 Shortly after the loss of radar contact the
- Shortly after the loss of radar contact the helicopter suffered an in-flight collision with termadvertent IMC

Limited experience

An example General Aviation – Pleasure flight scenario

SPS	HFACS
Pilot inexperienced	Risk assessment – Operation
Mission planning	Overcontrol/Undercontrol
Pilot decision making	Procedural error
Inadequate standards and regulations	Violation – Lack of discipline
Wilful disregard for rules and SOPs	Mission planning
	Overconfidence
Inadvertent entry into IMC	Vision restricted by
Failed to recognise cues to terminate course of action	meteorological conditions
	Limited total experience

An example General Aviation - Training scenario

- The dual exercise was for the student to practise emergency and autorotational landings.
- The landing area selected for the exercise was muddy with a forecast wind speed of 26 kts.
- As part of the exercise the flight instructor simulated an engine failure without any prior warning.
- During the subsequent autorotation the instructor allowed the rotor RPM to drop below the minimum.
- ➤ The helicopter contacted the ground with a high sink rate and rolled over.

An example General Aviation - Training scenario

- The dual exercise was for the student to practise emission planning regards terrain and weather
- The landing area selected for the exercise was muddy with a foreign the student briefing of the student
- As part of the exercist the training planuctor simulated an engine failure without any prior

Student control inputs uncoordinated

- During the subsequent autorotation the instructor allowed the rotor RPM to drop below the minimum. The flight instructor interacted too late
- The helicopter contacted the ground with a high sink rate and rolled over.

An example General Aviation - Training scenario

SPS	HFACS
Inadequate and untimely CFI action to correct student action	Risk assessment – Operation
	Procedural error
Pilot decision making	Overcontrol/Undercontrol
Perceptual judgment errors	Overconfidence
Inadequate mission planning: Weather and wind	Necessary action – Delayed
Training program management: CFI preparation and planning	Mission briefing
	Leadership/Supervision/
	Oversight inadequate
Inadequate landing	Training Program/Guidelines
procedures	

Intervention Recommendations

- In total 11 Intervention Recommendation categories identified
- The categories help identify areas for working groups of EHSIT
- Note: some categories overlap but this suggests areas for additional focus

Total number of Intervention Recommendations (Level 1)

EHSIT data preparation

- Refinement of the Intervention Recommendations
 - ★ Level 2 categorisation has been created
 - ★ 1591 IRs undergoing consolidation by EHSIT Plenary
- Specialist teams on SMS/Operations and Training launched so far

Photo Martin Bernandersso

Consolidated IRs - SMS/Operations

- SMS: Should be adopted and applied by all operators
- SOPs: Should be prepared and applied for all activities
- RISK ASSESSMENT/PRE-FLIGHT PREPARATION: Emphasise the importance of Risk Assessment in mission planning

Consolidated IRs - SMS/Operations

- ➤ SAFETY CULTURE: Develop an engagement/ communication plan to promote adherence to:
 - ★ the core principles of basic airmanship
 - ★ risk assessment
 - ★ rule compliance
- ➤ AIRCRAFT PERFORMANCE: Reinforce familiarity with Flight Manual through awareness campaign and consider formal examination during annual flying check

Consolidated IRs - Training

- ➤ INEXPERIENCED PILOTS: Training syllabus for ab-initio pilots should cover in more detail:
 - ★ Mission planning
 - ★ Vortex Ring / LTE
 - ★ Autorotation and other emergencies
 - ★ Passenger management
- DEGRADED FLIGHT CONDITIONS: Specific training to improve decision making process for pilot before and after inadvertent entry into IMC

Consolidated IRs - Training

- TRAINING PSYCHOLOGY/HUMAN FACTORS: Enhance instructor training in:
 - ★ Monitoring students
 - ★ Application of human factors principles
 - ★ Instructor intervention criteria

Concluding remarks

- > The top 4 identified SPS areas are:
 - ★ Pilot judgment & actions
 - ★ Safety culture/management
 - ★ Ground duties/Mission preparation
 - ★ Pilot situation awareness
- High correlation with US results on SPS level 1
- Differences can be observed for the various types of operation
- HFACS enhances the analysis of human factor issues

Concluding remarks

- Work continues within EHSIT:
 - ★ The first two specialist teams (SMS/Operations and Training) were launched in September 2009
 - Data driven analysis
 - ECAST SMS and various safety culture material available for consideration
- Attention on communication with stakeholders
 - ★ Private pilots, organisations, regulators...
 - ★ EHEST Communications Sub-Group established
 - Liaising with EGAST (common challenges)

The challenge now is to develop, implement and monitor effective measures to meet the 80% accident rate reduction target

Thank you for your attention

Questions?

Mailbox: ehest@easa.europa.eu

Annex

Number of Helicopter Accidents per Year

EASA MS Registered, CAT+AeW+GA Source: EASA Annual Safety Review

HFACS Overall Picture

HFACS model – upper levels

HFACS model – upper levels

HFACS model – upper levels

